Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner☆

نویسندگان

  • Nicole M. Collette
  • Cristal S. Yee
  • Deepa Murugesh
  • Aimy Sebastian
  • Leila Taher
  • Nicholas W. Gale
  • Aris N. Economides
  • Richard M. Harland
  • Gabriela G. Loots
چکیده

WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1(-/-) mice lack any obvious limb or skeletal defects, Sost(-/-) mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost(-/-); Sostdc1(-/-) mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost(-/-) and Sost(-/-); Sostdc1(-/-) mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Gli3 antagonism

The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no ge...

متن کامل

Elucidation, quantitative refinement, and in vivo utilization of the HOXA13 DNA binding site.

Mutations in Hoxa13 cause malformations of the appendicular skeleton and genitourinary tract, including digit loss, syndactyly, and hypospadias. To determine the molecular basis for these defects, the DNA sequences bound by HOXA13 were empirically determined, revealing a novel high affinity binding site. Correlating the utilization of this high affinity binding site with genes exhibiting pertur...

متن کامل

Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number a...

متن کامل

Expression and Functional Study of Extracellular BMP Antagonists during the Morphogenesis of the Digits and Their Associated Connective Tissues

The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitore...

متن کامل

Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh.

Sonic hedgehog (Shh) signaling regulates both digit number and identity, but how different distinct digit types (identities) are specified remains unclear. Shh regulates digit formation largely by preventing cleavage of the Gli3 transcription factor to a repressor form that shuts off expression of Shh target genes. The functionally redundant 5'Hoxd genes regulate digit pattern downstream of Shh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 383  شماره 

صفحات  -

تاریخ انتشار 2013